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Surface Tamm states in one-dimensional photonic crystals
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We present a theoretical study of surface Tamm states localized at an interface that separates a semi-infinite
isotropic left-handed metamaterial (LHM) and one-dimensional photonic crystal made of anisotropic in-
definite metamaterial (IMM) (always-cutoff material). We discuss the dispersion properties of the Tamm
states in different bandgaps and demonstrate that the cap layer, angular frequency, and arrangement of
photonic crystal can provide flexible control for the dispersive properties of the Tamm states.
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Surface electromagnetic waves comprise a special type of
localized waves that can be supported at the interface be-
tween two different physical media, where the wave vector
is complex, making the wave decay exponentially away
from the interface[1]. Surface waves (SWs) have been
studied in periodic dielectric structures, such as photonic
crystals (PCs), which can be manufactured artificially to
manipulate the dispersion properties of the waves[2−6].
Staggered SWs on PCs are often called optical surface
Tamm states in correlation with the nontraveling elec-
tron state on a crystal surface predicted by Tamm in
1932[7]. Such SWs supported by PCs are advantageous
because the Tamm states are robust with respect to small
surface roughness[8] and the low dielectric loss causes a
sharp resonant coupling between the incoming light and
the surface states[9].

Left-handed metamaterials (LHMs) with simultane-
ously negative effective dielectric permittivity and effec-
tive magnetic permeability were first suggested theoret-
ically by Veselago in the 1960s[10]. These metamateri-
als have been experimentally confirmed by Smith et al.
only a few years ago[11]. LHMs possess numerous ex-
traordinary properties[10,12−15]. The surface states in
a structure with LHM have attracted a great deal of
attention[16−18]. In the presence of LHMs, the optical
Tamm states can be backward, transferring energy in the
direction opposite to the phase[19].

The surface states in one-dimensional (1D) PC
consisting of isotropic LHM have already been
investigated[19−21]. LHMs are well-known artificial ma-
terials that possess anisotropic properties because of
the orientations of its arrays of spilt rings and wire
in space[22,23]. One of the anisotropic metamaterials,
i.e., indefinite metamaterial (IMM), in which not all
the principal components of the electric permittivity
and magnetic permeability tensors have the same sign,
has received increasing attention over the past several
years[24−26]. In this letter, we study the electromag-
netic SWs guided by an interface between LHM and a
1D periodic structure consisting of anisotropic IMM lay-
ers. Based on dispersion relations[24], IMM can be iden-
tified into four classes, namely, cutoff, anti-cutoff, never-

cutoff, and always-cutoff media. The 1D periodic struc-
ture in this letter contains two types of always-cutoff ma-
terials (µx-positive always-cutoff medium labeled as P,
and µx-negative always-cutoff medium labeled as N for
TE waves); hence, three band gaps exist. Moreover, we
demonstrate that the presence of an anisotropic IMM al-
lows the flexible control of the dispersion properties of
the surface states.

In this letter, we examine the surface Tamm state at the
interface between a uniform medium of isotropic LHM
and a semi-infinite 1DPC made of anisotropic IMM (Fig.
1). The permittivity and permeability tensors of the
anisotropic IMM have been assumed to be simultaneously
diagonalized[24], i.e.,

ε =

(
εx 0 0
0 εy 0
0 0 εz

)
, µ =

(
µx 0 0
0 µy 0
0 0 µz

)
. (1)

Considering that 1DPC consists of one type of IMM,
i.e., always-cutoff medium, the permittivity ε and perme-
ability µ of the always-cutoff medium have the following
forms[27]:

ε1y = 1 − 144/ω2, µ1x = 1.2, µ1z = 1, (2)

in the µx-positive always-cutoff materials P, and

ε2y = 3, µ2x = 1 − 100/ω2, µ2z = 1 − 100/ω2, (3)

in the µx-negative always-cutoff materials N, where ω is
the angular frequency measured in gigahertz.

The PC is capped by a termination layer of the same
material, but with selected width dc, as shown in Fig. 1.
For presentation convenience, we split this termination
layer P into two sublayers with lengths ds and dt, where
(ds + dt = dc). The periodic array comprise the bulk
of the crystal consisting of “cells”, such that each cell is
made of three layers, namely, P, N, and P, with respective

widths of dt,d2, and d1−d
[28]
t .
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Fig. 1. (Color onlion) Sketch of a typical 1DPC consisting
of alternating layers of P and N always-cutoff material. The
green regions denote the P always-cutoff material. The follow-
ing values are obtained:d1 = 16.5 mm, d2 = 10 mm, ε0 = −1,
and µ0 = −1.

Fig. 2. (Color onlion) Dispersion diagram of the TE-polarized
Tamm states in the first, second, and third bandgaps (from
down to up) for the P-N periodic structures. Unshaded re-
gions: bandgaps of 1DPC. Solid: dispersion properties of the
Tamm states. Insets show the blow-up regions of the first and
second bandgaps for different values of dc.

We choose a coordinate system in which the layers
have normal vectors along OZ. The electric field of the
monochromatic TE-polarized waves is parallel to the OY

axis. Based on Ref. [29], the electric field can be ex-
pressed as

E = eyE(z) exp
[
i(kβx − ωt)

]
, (4)

where ω is the angular frequency, k = ω/c is the vacuum
wave number, β is the normalized wave number compo-
nent along the interface, and c is the speed of light. E(z)
satisfies Maxwell equation in the form

d2E(z)

dz2
+ k2[ε(z)µ(z) − β2]E(z) = 0, (5)

where both permittivity ε(z) and permeability µ(z) char-
acterize the transverse structure of the media. Consid-
ering the continuity conditions of the tangential compo-
nents of the electric and magnetic fields at the interfaces
of the periodic structure, the elements of the transfer

matrix M are

M =

(
A B
B∗ A∗

)
, (6)

A = eik1d1

[
cos k2d2 +

1

2
i (q1 + q2) sin k2d2

]
, (7)

B = eik1(d1−2dt)
1

2
i (q2 − q1) sin k2d2, (8)

where

k2
j =

ω2

c2

(
εjyµjx −

µjx

µjz

β2

)
, j = 1, 2,

q1 =
k1

k2

µ2x

µ1x

, q2 =
1

k1
.

The solutions of the surface Tamm states along the
interface are well known, which are modes that decay
from the interface in both directions, as one moves away
from the surface of the PC. At the left side homoge-
neous medium (z < −ds), the wave damping provides
β > ε0µ0. At the right-side of the periodic structure,
according to Bloch’s theorem, the waves follow the Bloch
modes

E(z) = ψ(z) exp(iKBz), (9)

whereKB is the Bloch wave number and ψ(z) is the Bloch
function. In the allowed bands, KB is real. By contrast,
the waves in the bandgap will decay, provided that KB is
complex. We use a well-known transfer matrix method
to calculate the Bloch modes[2].

Using the continuity conditions at the interface[28], we
obtain the dispersion equation of the Tamm states as

q0
k1

µ1x

µ0
= −i

λ−A−B

λ−A+ B̃
, (10)

where

λ = e±iφ = Re(A) ±
√

Re(A)2 − 1,

B̃ = e−2ik1dSB, q0 =
ω

c

√
β2 − ε0µ0.

The always-cutoff medium is similar to single negative
materials[30]. Hence, three bandgaps exist for the peri-
odic structure consisting of always-cutoff materials: the
first gap, the first SNG gap[30]; the second gap, the zero-
ϕeff gap[31]; the third gap, the Bragg gap. We present in
Fig. 2 the dispersion properties of the Tamm states in
the three bandgaps for different values of cap layer thick-
ness dc in the P-N periodic structures.

Different dispersion curves can be plotted for different
values of dc (Fig. 2), which describe the possibility of
controlling the dispersion properties of the Tamm states
by varying the cap layer. In addition, the bandgaps of
anisotropic PC also affect the surface Tamm states. For
the same values of dc (dc = 0.6d1), the dispersion curves
in the three gaps are diverse. The slopes of the dispersion
curves remain negative for the first and second bandgaps,
whereas the dispersion curve for the third bandgap ex-
hibits a positive slope. The slope of the dispersion curve
corresponds to the group velocity of the Tamm states and
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Fig. 3. (Color onlion) Backward modes of (a) the first SNG
gap (ω = 2.3828 GHz) and (b) zero-ϕeff gap (ω = 7.3402
GHz); (c) forward mode of the third gap (ω = 16.3129 GHz);
(d) amplitude distributions of the Tamm states for dc = 0.6d1

and β = 1.2 in the three bandgaps.

Fig. 4. Total energy flow of the Tamm states modes in the
(a) first, (b) second, and (c) third bandgaps for dc = 0.6d1.

the direction of the total energy flow. The modes with
the positive (negative) slope of the dispersion curves are
referred to as forward (backward) Tamm states, and the
energy flow are parallel (anti-parallel) with the wave vec-
tor.

We plot the profiles of the Tamm modes with different
frequencies in the three gaps in Fig. 3. For mode in Fig.
3(a), the energy flow in the LHM exceeds that in the
periodic structure (slow decay of the field for z < −ds
and fast decay into the periodic structure) and the mode
is backwards. Mode in Fig. 3(c) is the opposite case. We
also plot the total energy flow in the modes in Fig. 4 to
confirm the above discussion. The total energy flow of
the modes in the first and zero-ϕeff bandgaps are nega-
tive, whereas that in the third bandgap remain positive.
At the same time, we deduce that the energy flow of
the Tamm states switch from backward to forward with
an increase in frequency. Therefore, the surface Tamm
states can be controlled possibly by the cap layer and
the angular frequency.

Furthermore, we study the effect of the arrangement
of the always-cutoff materials on the Tamm modes. In
the second band gap (zero-ϕeff gap), we compare the
dispersive curves for the different values of the cap layer
dc in the N-P and P-N periodic structures (with similar
geometry and physical parameters) in Fig. 5. The slopes
of the dispersion curves remain negative for two differ-
ent structures, but with several differences. With the
enhancement of dc, the slopes of the dispersion curves
for the N-P periodic structure increase, whereas that for
the P-N periodic structure decreases slowly. This result
indicates that the arrangement of the N and P layers can-
not affect the energy flow direction of the Tamm states
but can influence the amount of energy flow. Hence, to
demonstrate this effect, we plot the total energy flow
of the Tamm modes for the same frequency (ω =7.33
GHz) but different cap layers in the N-P and P-N peri-
odic structures in Fig. 6. The corresponding modes are
marked on the dispersive curves with circles and triangles
in Fig. 5. Obviously, as the value of dc increases, the
energy flow of the surface modes increases for the N-P
structure, but decreases for the P-N structure. In this
letter, we only compare the energy flow value, in which

Fig. 5. (Color onlion) Dispersion diagram of the Tamm states
in the second bandgap for the (a) N-P and (b) P-N periodic
structures. Unshaded region: the second bandgap.

Fig. 6. (Color onlion) Total energy flow of the Tamm states
with different cap layers dc in the second bandgap for the
N-P and P-N periodic structures.
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the negative sign indicates that the total energy flow is
backward.

In conclusion, we study the electromagnetic surface
Tamm states supported at the interface between an
isotropic LHM and a 1DPC consisting of anisotropic
IMM. We discuss the properties of the surface Tamm
states in the three bandgaps and demonstrate that TE-
polarized SWs can be backward or forward in different
bandgaps. We also show that the PC arrangement af-
fects the amount of energy flow of the Tamm states by
comparing the properties of the Tamm states with the
case of N-P and P-N structure. Our results reveal that
the presence of the anisotropic IMM in the PC provides
more flexible control to the surface Tamm states.

This work was supported by the National Natural Sci
ence Foundation of China under Grant No. 11274225.
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